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Topological indices are the global parameters defined for the simple graphs such that they give the same numerical value if 
the graphs are isomorphic. These numbers are of much importance because of their chemical importance, they correlate 
certain physico-chemical properties of certain organic compounds such hydrocarbons etc. A chemical graph is a graph which 
is created from some molecular structure by applying some graphical operations. Valency is a local graph parameter, which is 
defined for every vertex as the number of connections with other vertices in a graph, just like for an atom in a molecule. 
Dendrimers are recognized as one of the major commercially available nanoscale building blocks, large and complex 
molecules with well defined chemical structure. Cactus chains are simple linear polymers which were first known as Husimi 
trees. A cactus graph is a connected graph in which no edge lies in more than one cycle. In this article, we study general 
Randić, harmonic, atom-bond connectivity (ABC), and geometric arithmetic (GA) indices for organosilicon dendrimers and 
cactus chains of three types.  
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1. Introduction and preliminary results 
 

Nanobiotechnology is a rapidly advancing area of 

scientific and technological opportunity that applies the 

tools and processes of nanofabrication to build devices for 

studying biosystems. Dendrimers are one of the main 

objects of this new area of science. A dendrimer is an 

artificially manufactured or synthesized molecule built up 

from branched units called monomers using a nanoscale 

fabrication process. Dendrimers are recognized as one of 

the major commercially available nanoscale building 

blocks, large and complex molecules with very well 

defined chemical structure. From a polymer chemistry 

point of view, dendrimers are nearly perfect monodisperse 

macromolecules with a regular and highly branched three 

dimensional architecture. They consist of three major 

architectural components: core, branches and end groups. 

New branches emitting from a central core are added in 

steps until a tree-like structure is created. The nanostar 

dendrimer is a part of a new group of macroparticles that 

appear to be photon funnels just like artificial antennas. 

These macromolecules and more precisely those containing 

phosphorus are used in the formation of nanotubes, micro 

and macrocapsules, nanolatex, coloured glasses, chemical 

sensors, modified electrodes and so on [3]. 

In this paper, we consider a class of simple linear 

polymers called cactus chains. Cactus graphs were first 

known as Husimi trees; they appeared in the scientific 

literature some sixty years ago in papers by Husimi and 

Riddell concerned with cluster integrals in the theory of 

condensation in statistical mechanics [12, 15, 20]. 

In this article, H  is considered to be simple 

connected graph with vertex set )(HV  and edge set 

)(HE  and degree of vertex )(HVa  is ad . The 

notations used in this article are mainly taken from the 

books [6, 11, 22]. 

The very first and oldest degree based topological 

index is Randić index [23] denoted by )(H  and 

introduced by Milan Randić in 1975 .   

Definition. The Randić index of graph H  is defined 

as  

baHEab dd
HR

1
=)(

)(2

1 



 

The general Randić index was proposed by Bollobás 

and Erdös [4] and Amic et al. [2] independently, in 1998 . 

Then it has been extensively studied by both 

mathematicians and theoretical chemists [16]. Many 

important mathematical properties have been established 

[5]. For a survey of results, we refer to the new book by Li 

and Gutman [18]. 

Definition. The general Randić index )(HR  is the 

sum of 
)( vudd  over all edges )(= HEabe   

defined as  
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

 )(=)(
)(

ba

HEab

ddHR 


 

Obviously )(
2

1 HR


 is the particular case of 

)(HR  when 
2

1
=  . 

Another variant of the Randić index named the 

harmonic index which first appeared in [8].   

Definition. For a graph G , the harmonic index 

)(GH  is defined as  

baHEab dd
G

1
=)(

)(




H  

One of the well-known connectivity topological index 

is atom-bond connectivity )(ABC  index introduced by 

Estrada et al. in [7].   

Definition. For a graph H , the ABC  index is 

defined as  

ba

ba

HEab dd

dd
HABC

2
=)(

)(





 

 
Another well-known connectivity topological 

descriptor is geometric-arithmetic )(GA  index which was 

introduced by Vukičević et al. in [21].   

Definition. Consider a graph H , then its GA  index 

is defined as  

)(

2
=)(

)( ba

ba

HEab dd

dd
HGA





 

 

In this paper, we compute general Randić R  for 

2

1
1,,

2

1
1,=  , harmonic, ABC  and GA  indices 

for an important type of dendrimer and cactus triangular 

and square chains. In the following section, we compute 

these topological indices for organosilicon dendrimer. We 

encourage readers to review these papers [13, 14, 17] to 

further study these topological indices for nanostructures 

and networks. 

 

 

2. Topological indices of organosilicon  
dendrimer 
 

Nakayama and Lin in [19] prepared the organosilicon 

dendrimer composed of 16 thiophene rings, 

5164464 SiSHC . The aim of this section is to compute the 

valency based topological indices of organosilicon 

dendrimer ][nG , 1n . The first two members of this 

dendrimer class is depicted in Fig. 1. See [24] for further 

study of this class of dendrimers.   

 

Lemma 2.1. Let ][= nGG  be the molecular graph 

of organosilicon dendrimer for 1n , then 

11332|=)(| 1  nGV .  

 

Proof. This graph is constructed from four isomorphic 

branches sharing the common vertex. Let ng  be one of the 

four isomorphic branches. This graph ng  contains 
j

n

j

3
1=

  

vertices, which is a geometric series having sequence of its 

partial sums is 1)(3
2

1
n

. Then ][nG  contains 

1)2(3=34
1=

 nj
n

j

 pentagons, which clearly shows that 

][nG  is non-bipartite graph. The graph nG  also has 

132=134 1
1

1=

 


 nj
n

j

 vertices outside pentagons. So 

total number of vertices in ][nG  are  

 

11.332=1)33(64|=])[(| 11

1=

  nnj
n

j

nGV  

 

Lemma 2.2. Let ][= nGG  be the molecular graph 

of organosilicon dendrimer for 1n , then 

14338|=)(| 1  nGE .   

 

Proof. This graph is constructed from four isomorphic 

branches sharing the common vertex. Let ng  be one of the 

four isomorphic branches. This graph ng  contains 

132=34 11

1=

  nj
n

j

 edges outside pentagons. Then 

][nG , of course contains 438=}34{4 1

1=

 nj
n

j

 

edges outside pentagons. Also ][nG  contains 

1)2(3=34
1=

 nj
n

j

 pentagons. So cardinality of edge set 

of ][nG  becomes,  

 

14.338=}3534{4|=])[(| 1

1=

1

1=

   nj
n

j

j
n

j

nGE  
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Fig. 1. The first two members of ][nG  with 1,2=n . 

 

 

Now we compute certain degree based topological 

indices for these dendrimers. We can clearly see that, there 

are three type of edges in graph of this dendrimer based on 

degrees of end vertices of each edge. Table 1shows such a 

partition for ][nG  for 1n . 

 

 

 

 

 

Table 1. Edge partition of organosilicon dendrimer ][nG , 1n  based on degrees of end vertices of each edge. 

 

),( ba dd where 

)(HEab  

(2,2)  (2,3)  (3,4)  

Cardinality of partite set  1)6(3 n
 1)4(3 n

 

438 1  n

 

 
In the following theorem, we compute general Randi

c R  for 
2

1
1,,

2

1
1,=   for ][nG , 1n .   

Theorem 2.1. Consider ][nG , 1n , then its 

general Randi c  index is equal to 

=])[( nGR  































.
2

1
=3,

3

32

3

62
9)362

3

34
(

1;=,
2

5
3

6

43

;
2

1
=12,643836)33166(12

1;=96,3240

1

1

1

1









n

n

n

n

 

 

Proof. Consider the organosilicon dendrimer ][nG , 

1n  with n  as defining parameter. There are three 

types of edges in H  based on degrees of end vertices of 

each edge. Table 1 shows such an edge partition of H . 

For 1=  

Now we apply the formula of )(HR  for 1= . 

 

)(=)(
)(

1 ba

HEab

ddHR 


 

By using edge partition given in Table 1, we get a 

non-linear expression, 

 

4)4)(33(83)1)(24(32)1)(26(3=])[( 1

1  nnnnGR

 
After simplifying, we get  

 

])[(1 nGR = 963240 1  n  

For
2

1
=  

We apply the formula of )(HR  for 
2

1
= .  

 

)(=)(
)(2

1 ba

HEab

ddHR 


 

 
By using edge partition given in Table 1, we get this 

exponential expression in parameters n , 

 

434)3(8321)4(3221)6(3=])[( 1

2

1  nnnnGR

12643836)33166(12=])[( 1

2

1  nnGR  

For 1=   

We apply the formula of )(HR  for 1=  .  

)(

1
=)(

)(

1

baHEab dd
HR





  

)
43

1
4)(3(8)

32

1
1)(4(3)

22

1
1)(6(3=])[( 1

1








 



nnnnGR

 

2

5
3

6

43
=])[( 1

1  



nnGR  

For 
2

1
=   
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We apply the formula of )(HR  for 
2

1
=  .  

)(

1
=)(

)(2

1

baHEab dd
HR







 

)
43

1
4)(3(8

)
32

1
1)(4(3)

22

1
1)(6(3=])[(

1

2

1
















n

nnnGR  

3
3

32

3

62
9)362

3

34
(=])[( 1

2

1  



nnGR  

 
In the following theorem, we compute harmonic index 

for these dendrimers.   

Theroem 2.2. For ][nG , 1n , the harmonic index 

is equal to  

2

5
3

6

43
=])[( 1  nnGH  

 

Proof. Let ][nG  be the chemical graph of 

organosilicon dendrimer. By using edge partition from 

Table1, we easily prove it. We know  

 

baHEab dd
H





2
=)(

)(

H  

)
43

2
4)(3(8)

32

2
1)(4(3)

22

2
1)(6(3=])[( 1








 nnnnGH

 
 

By doing some calculation, we get our required result 

 

2

5
3

6

43
=])[( 1  nnGH  

 

In the following theorem, we compute the ABC  

index of organosilicon dendrimer ][nG .   

Theroem 2.3. Consider ][nG  be the graph of 

organosilicon dendrimer, then its ABC  index is equal to 

 

25
3

152
)3215

3

154
(=)][( 1  nnGABC  

 
Proof. Consider the graph of organosilicon dendrimer. 

By using the edge partition based on the degrees of end 

vertices of each edge given in Table 1, we compute the 

ABC  index of ][nG .Since  

 

ba

ba

HEab dd

dd
HABC

2
=)(

)(





 

This gives that 

 

43

243
4)3(8

32

232
1)4(3

22

222
1)6(3=])[( 1














 nnnnGABC

After simplification, we get  

 

25
3

152
)3215

3

154
(=])[( 1  nnGABC  

 

The GA  index for ][nG  is computed in the 

following theorem.   

Theroem 2.4. Consider the graph of organosilicon 

dendrimer ][nG , 1n , then its GA  index is equal to  

 

6
5

68

7

316
18)3

5

624

7

332
(=])[( 1  nnGGA

 
Proof. Consider the graph of organosilicon dendrimer 

][nG , 1n . Since  

ba

ba

HEab dd

dd
HGA





2
=)(

)(

 

 
This directly implies from table 1  that 

 

43

432
4)3(8

32

322
1)4(3

22

222
1)6(3=])[( 1














 nnnnGGA

 
After simplification, we get  

 

6
5

68

7

316
18)3

5

624

7

332
(=])[( 1  nnGGA  

 
3. Cactus chains 
 

A cactus graph is a connected graph in which no edge 

lies in more than one cycle. Consequently, each block of a 

cactus graph is either an edge or a cycle. If all blocks of a 

cactus G  are cycles of the same size i  , the cactus is i  - 

uniform. A triangular cactus is a graph whose blocks are 

triangles, i.e., a 3  -uniform cactus. A vertex shared by two 

or more triangles is called a cut-vertex. If each triangle of a 

triangular cactus G  has at most two cut-vertices, and each 

cut-vertex is shared by exactly two triangles, we say that 

G  is a chain triangular cactus. By replacing triangles in 

this definitions by cycles of length 4  we obtain cacti 

whose every block is 4C  . We call such cacti "square 

cacti". Note that the internal squares may differ in the way 

they connect to their neighbors. If their cut-vertices are 

adjacent, we say that such a square is an ortho-square; if the 

cut-vertices are not adjacent, we call the square a 

para-square. 

In Section 3.1 we study the topological indices of the 

chain triangular cactus. In subsection 3.2 we study the 
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topological indices of chains of squares (see [1]).  

 

 

3.1 Topological indices of chain triangular cactus 

 

We call the number of triangles in G  , the length of 

the chain. An example of a chain triangular cactus is shown 

in Fig. 2. Obviously, all chain triangular cacti of the same 

length are isomorphic. Hence, we denote the chain 

triangular cactus of length n  by nT .  

 

 
Fig. 2. An n -dimensional triangular chain cactus. 

 

 

There are three types of edges in the nT  based on the 

degree of end vertices of each edge showed in Table 2. 

 

Table 2. Edge partition of triangular cactus nT , 1n  based on degrees of end vertices of each edge. 

 

),( ba dd  where )(HEab  (2,2)  (2,4)  (4,4)  

Cardinality of partite set  2  n2  2n  

 
Following theorem presents the analytically closed 

formula of general Randić index )(GR  with 

2

1
,

2

1
1,1,=   for this cactus graph.   

Theroem 3.1.1. Consider the nT  cactus, then its 

general Randić index is equal to 

 

=)( nTR  























.
2

1
=,

4

3
)

4

1

2

2
(

1;=,
8

3

16

5

;
2

1
=4,4)2(4

1;=24,32









n

n

n

n

 

 

Proof. Consider H  be the triangular cactus nT  with 

defining parameter n . There are three types of edges in 

H  based on degrees of end vertices of each edge. Table 

2  shows such an edge partition of H . 

For 1=  

Now we apply the formula of )(HR  for 1= .  

 

)(=)(
)(

1 ba

HEab

ddHR 


 

 
By using edge partition given in Table 2, we get, 

 

4)2)(4(4)(222)2(2=)(1  nnTR n  

 
After simplifying, we get  

 

2432=)(1 nTR n  

For 
2

1
=  

We apply the formula of )(HR  for 
2

1
= .  

)(=)(
)(2

1 ba

HEab

ddHR 


 

 
By using edge partition given in Table 2, we get, 

 

442)(422222=)(
2

1  nnTR n  

44)2(4=)(
2

1  nTR n  

For 1=   

We apply the formula of )(HR  for 1=  .  

)(

1
=)(

)(

1

baHEab dd
HR





  

)
44

1
2)(()

42

1
(2)

22

1
2(=)(1








 nnTR n  

8

3

16

5
=)(1  nTR n  

For 
2

1
=   

We apply the formula of )(HR  for 
2

1
=  .  

)(

1
=)(

)(2

1

baHEab dd
HR






 

)
44

1
2)(()

42

1
(2)

22

1
2(=)(

2

1








nnTR n
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4

3
)

4

1

2

2
(=)(

2

1 


nTR n
 

 
In the following theorem, we compute harmonic index 

for this dendrimer.   

Theroem 3.1.2. For nT , 1n , the harmonic index is 

equal to  

 

2

1

12

11
=)( nTnH  

 

Proof. Let nT  be the chemical graph of triangular 

cactus chain graph. By using edge partition from Table 2, 

we easily prove it. We know  

baHEab dd
H





2
=)(

)(

H  

)
44

2
2)(()

42

2
(2)

22

2
2(=)(








nnTnH  

 
By doing some calculation, we get our required result 

 

2

1

12

11
=)( nTnH  

 

Now we compute ABC  index of nT .   

Theroem 3.1.3. Consider the triangular cactus chain 

nT , then its ABC  index is,  

 

2
2

6
)2

4

6
(=)(  nTABC n  

 

Proof. Let nT  be the n-dimensional triangular cactus chain. 

By using edge partition given in Table 2, we easily prove it. We 

know  

 

ba

ba

HEab dd

dd
HABC

2
=)(

)(





 

44

244
2)(

42

242
2

22

222
2=)(














nnTABC n

 
 

By doing some calculation, we get, 

 

2
2

6
)2

4

6
(=)(  nTABC n

 
 

In the following theorem, we compute GA  index of 

triangular cactus nT .   

Theroem 3.1.4. Consider the nT  triangular cactus, 

the its GA  index is,  

nTGA n 1)
3

24
(=)(   

Proof. Let nT  be the n-dimensional triangular cactus 

chain. We easily prove it by using edge partition given in 

Table 2. We know  

)(

2
=)(

)( ba

ba

HEab dd

dd
HGA





 

 

)
44

442
2)(()

42

422
(2)

22

222
2(=)(














nnTGA n

 
 

By doing some calculation, we get 

nTGA n 1)
3

24
(=)(   

 
3.2  Topological indices of chain square cacti 

 

By replacing triangles in the definitions of triangular 

cactus, by cycles of length 4  we obtain cacti whose every 

block is 4C  . We call such cacti, square cacti. An example 

of a square cactus chain is shown in Fig. 3. We see that the 

internal squares may differ in the way they connect to their 

neighbors. If their cut-vertices are adjacent, we say that 

such a square is an ortho-square; if the cut-vertices are not 

adjacent, we call the square a para-square. 

We denote the para-chain square cactus graph of length 

n  as nQ , and ortho-chain square cactus graph of length 

n  as nO . We first study topological indices of nQ . An 

n -dimensional para-chain square cactus graph is depicted 

in Fig. 3.  

 

 
Fig. 3. An n -dimensional para-chain square cactus. 

 

 

There are two types of edges in this graph based on degrees 

of end vertices of each edge showed in Table 3.  

 

Table 3. Edge partition of para-square chain cactus 
nQ ,  

1n  based on degrees of end vertices of each edge. 

 

),( ba dd  where )(HEab  (2,2)  (2,4)  

Cardinality of partite set  4  44 n  
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Following theorem presents the analytically closed formula 

of general Randić index )(GR  with 
2

1
,

2

1
1,1,=   for 

this cactus graph.   

Theroem 3.2.1. Consider the nQ  cactus, then its general 

Randić index is equal to 

 

=)( nQR  
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
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

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2

1

;
2

1
=8,2828

1;=16,32









n

n

n

n

 

 

Proof. Consider nQ  be the para-chain square cactus  

with defining parameter n . There are two types of edges in 

nQ  based on degrees of end vertices of each edge. Table 3 

shows such an edge partition of nQ . 

For 1=  

Now we apply the formula of )(HR  for 1= . 
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ddHR 
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By using edge partition given in Table 3, we get, 
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After simplifying, we get  
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2

1
= .  
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By using edge partition given in Table 3, we get, 
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For 1=   

We apply the formula of )(HR  for 1=  .  
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We apply the formula of )(HR  for 
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In the following theorem, we compute harmonic index 

for this dendrimer.   

Theroem 3.2.2. For nQ , 1n , the harmonic index 

is equal to  
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Proof. Let nQ  be the chemical graph of para-chain 

square cactus. By using edge partition from Table 3, we 

easily prove it. We know  
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By doing some calculation, we get our required result 
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Now we compute ABC  index of nQ .   

Theroem 3.2.3. Consider the para-chain square cactus 

nQ , then its ABC  index is,  
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Proof. Let H  be the para-chain square cactus nQ . 

By using edge partition given in Table 3, we easily prove it. 

We know  
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By doing some calculation, we get, 
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In the following theorem, we compute GA  index of 

para-chain square cactus nQ .   

Theroem 3.2.4. Consider the para-chain square cactus 

nQ , the its GA  index is,  
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Proof. Let H  be the para-chain square cactus nQ . 

We easily prove it by using edge partition given in Table 3. 
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By doing some calculation, we get 
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Now we study topological indices of ortho-chain square 

nO . 

An n -dimensional ortho-chain square cactus graph is depicted in 

Fig. 4.  

 

 
 

Fig. 4. An n -dimensional ortho-chain square cactus. 

 

There are three types of edges in this graph based on 

degrees of end vertices of each edge showed in Table 4.  

 

Table 4. Edge partition of ortho-chain square cactus nO , 1n  based on degrees of end vertices of each edge. 
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Following theorem presents the analytically closed 

formula of general Randić index )(GR  with 
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Theroem 3.3.1. Consider the nO  cactus, then its 

general Randić index is equal to 
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Proof. Consider nO  be the ortho-chain square cactus 

with defining parameter n . There are three types of edges 

in H  based on degrees of end vertices of each edge. Table 

4 shows such an edge partition of H . 

For 1=  

Now we apply the formula of )(HR  for 1= .  
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By using edge partition given in Table 4, we get, 
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By using edge partition given in Table 4, we get, 
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In the following theorem, we compute harmonic index 

for this dendrimer.   

Theroem 3.3.2. For nO , 1n , the harmonic index 

is equal to  
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Proof. Let nO  be the chemical graph of ortho-chain 
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By doing some calculation, we get our required result 
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Now we compute ABC  index of nO .   

Theroem 3.3.3. Consider the ortho-chain square 

cactus nO , then its ABC  index is,  
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Proof. Let nO  be the ortho-chain square cactus. By 

using edge partition given in Table 4, we get it. We know  
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By doing some calculation, we get, 
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In the following theorem, we compute GA  index of 

ortho-chain square cactus nO .   

Theroem 3.3.4. Consider the ortho-chain square 

cactus nO , the its GA  index is,  
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Proof. Let H  be the ortho-chain square cactus nO . 

We prove it by using edge partition given in Table 4. We 
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By doing some calculation, we get 
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4. Conclusion 
 

In this paper, certain valency based topological indices, 

namely general Randić index, harmonic index, 

atomic-bond connectivity index (ABC) and 

geometric-arithmetic index (GA) for organosilicon 

dendrimer were studied for the first time. We also studied 

the cactus chain graphs having triangle and square as a unit 

of the chain. These results are very helpful in understanding 
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and predicting the physico-chemical properties for these 

chemical structures. The study of distance related graph 

indices for these important chemical graphs are still open to 

work on. 
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